Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Antibiotics (Basel) ; 11(4)2022 Mar 24.
Article in English | MEDLINE | ID: covidwho-1834683

ABSTRACT

The multiplex PCR is a powerful and efficient tool that was widely used during the COVID-19 pandemic to diagnose SARS-CoV-2 infections and that has applications for bacterial identification, as well as determining bacterial resistance to antibiotics. Therefore, this study aimed to determine the usability of multiplex PCR, especially in patients self-medicated with antibiotics, where bacterial cultures often give false-negative results. A cross-sectional study was developed in two COVID-19 units, where 489 eligible patients were included as antibiotic takers and non-antibiotic takers. Antibiotic takers used mostly over-the-counter medication; they suffered significantly more chronic respiratory conditions and were self-medicated most often with cephalosporins (41.4%), macrolide (23.2%), and penicillin (19.7%). The disease severity in these patients was significantly higher than in non-antibiotic takers, and bacterial superinfections were the most common finding in the same group (63.6%). Antibiotic takers had longer hospital and ICU admissions, although the mortality rate was not significantly higher than in non-antibiotic takers. The most common bacteria involved in secondary infections were Staphylococcus aureus (22.2%), Pseudomonas aeruginosa (27.8%), and Klebsiellaspp (25.0%). Patients self-medicating with antibiotics had significantly higher rates of multidrug resistance. The multiplex PCR test was more accurate in identifying multidrug resistance and resulted in a quicker initiation of therapeutic antibiotics compared with instances where a bacterial culture was initially performed, with an average of 26.8 h vs. 40.4 h, respectively. The hospital stay was also significantly shorter by an average of 2.5 days when PCR was used as an initial assessment tool for secondary bacterial infections. When adjusted for age, COVID-19 severity, and pulmonary disease, over-the-counter use of antibiotics represented a significant independent risk factor for a prolonged hospitalization (AOR = 1.21). Similar findings were observed for smoking status (AOR = 1.44), bacterial superinfection (AOR = 1.52), performing only a conventional bacterial culture (AOR = 1.17), and a duration of more than 48 h for bacterial sampling from the time of hospital admission (AOR = 1.36). Multiplex PCR may be a very effective method for diagnosing secondary bacterial infections in COVID-19 individuals self-medicating with antibiotics. Utilizing this strategy as an initial screen in COVID-19 patients who exhibit signs of sepsis and clinical deterioration will result in a faster recovery time and a shorter period of hospitalization.

2.
Antibiotics ; 11(4):437, 2022.
Article in English | MDPI | ID: covidwho-1762125

ABSTRACT

The multiplex PCR is a powerful and efficient tool that was widely used during the COVID-19 pandemic to diagnose SARS-CoV-2 infections and that has applications for bacterial identification, as well as determining bacterial resistance to antibiotics. Therefore, this study aimed to determine the usability of multiplex PCR, especially in patients self-medicated with antibiotics, where bacterial cultures often give false-negative results. A cross-sectional study was developed in two COVID-19 units, where 489 eligible patients were included as antibiotic takers and non-antibiotic takers. Antibiotic takers used mostly over-the-counter medication;they suffered significantly more chronic respiratory conditions and were self-medicated most often with cephalosporins (41.4%), macrolide (23.2%), and penicillin (19.7%). The disease severity in these patients was significantly higher than in non-antibiotic takers, and bacterial superinfections were the most common finding in the same group (63.6%). Antibiotic takers had longer hospital and ICU admissions, although the mortality rate was not significantly higher than in non-antibiotic takers. The most common bacteria involved in secondary infections were Staphylococcus aureus (22.2%), Pseudomonas aeruginosa (27.8%), and Klebsiellaspp (25.0%). Patients self-medicating with antibiotics had significantly higher rates of multidrug resistance. The multiplex PCR test was more accurate in identifying multidrug resistance and resulted in a quicker initiation of therapeutic antibiotics compared with instances where a bacterial culture was initially performed, with an average of 26.8 h vs. 40.4 h, respectively. The hospital stay was also significantly shorter by an average of 2.5 days when PCR was used as an initial assessment tool for secondary bacterial infections. When adjusted for age, COVID-19 severity, and pulmonary disease, over-the-counter use of antibiotics represented a significant independent risk factor for a prolonged hospitalization (AOR = 1.21). Similar findings were observed for smoking status (AOR = 1.44), bacterial superinfection (AOR = 1.52), performing only a conventional bacterial culture (AOR = 1.17), and a duration of more than 48 h for bacterial sampling from the time of hospital admission (AOR = 1.36). Multiplex PCR may be a very effective method for diagnosing secondary bacterial infections in COVID-19 individuals self-medicating with antibiotics. Utilizing this strategy as an initial screen in COVID-19 patients who exhibit signs of sepsis and clinical deterioration will result in a faster recovery time and a shorter period of hospitalization.

3.
J Pers Med ; 12(2)2022 Feb 10.
Article in English | MEDLINE | ID: covidwho-1703823

ABSTRACT

Although laboratory data show that antibody responses to COVID-19 immunization give superior neutralization of certain circulating variations to spontaneous infection, few real-world epidemiological studies demonstrate the advantage of vaccination for previously infected individuals. This paper summarizes the outcomes of a case-control study conducted in Romania between March 2020 and October 2021 on patients previously infected with SARS-CoV-2. A case-control study was implemented after identification of 62 breakthrough cases. These cases were matched by age and gender to a 1:1 ratio with a control group of unvaccinated patients with SARS-CoV-2 reinfection status. There were no significant differences in the severity of cases and mortality between the study groups. However, unvaccinated patients had a shorter protection from natural immunity than patients with full vaccination status (58 days versus 89 days). The unvaccinated cases with SARS-CoV-2 reinfection were also statistically more likely to have a longer hospital admission duration (12.4 days versus 9.8 days), and required more non-invasive oxygen supplementation during their stay than breakthrough cases (37.1% versus 19.4%). Individuals with prior SARS-CoV-2 infection who were not vaccinated are not at a higher risk of severe COVID-19 infection or mortality compared to those who were completely vaccinated with the mRNA vaccine Comirnaty® Pfizer/BioNTech BNT162b2 and acquired a breakthrough infection within 2-3 months of the previous infection with a Beta or Delta SARS-CoV-2 variant. Although our findings are consistent with natural immunity offering similar short-term protection to a second dose of mRNA vaccine, all eligible individuals should be provided with immunization to lower their risk of infection, even if they have already been infected with SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL